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ABSTRACT

The problem considered is that of determining the radius of
00

convergence of the series E u(r)xr , when the coefficients u(r) are
0

connected by a recurrence relation containing (p + 1) terms. Apart

from the trivial case p = 1, only the case p = 2 has hitherto been

treated, using the method of continued fractions, which cannot be

generalized to p > 2.

In this paper, a matrix technique is given, which is applicable

to any value of p, whereby infinite products of (p X p) matrices are

used to formulate characteristic equations and expressions for the u(r).

Particular attention is given to the situation in which the problem

involves (p - 1) variable parameters, whose values have to be deter-

mined in order to secure the greatest possible radius of convergence.



CONVERGENCE OF RECURRING SERIES WITH GENERAL-ORDER

RECURRENCE RELATIONS

F. M. Arscott

1. Introduction

In this paper we investigate convergence properties of a series

r; u(r)x r  (1.1)
0

when there is a recurrence relation between (p + 1) successive

coefficients u(r) of the series, of the form

u(r+l) = a1 (r)u(r) + a 2(r)u(r -)+... + ap (r)u(r-p+l) , (r>p-l) (1.2)

in which the a (r) have known asymptotic behavior as r - oo.. The main

feature of interest is the phenomenon which I shall call "augmented

convergence" ; in general, the series (1.1) will have a certain radius of

convergence p1 ; if a certain relation holds between the coefficients

ai(r) and the "starting values" u(O), u(1), . . . , u(p - 1), then the radius

of convergence may be increased to a higher value p2 ; if a further

relation is also satisfied then the radius of convergence may be increased

to a still higher value p3 , and so on. Ultimately, if (p - 1) relations

are satisfied, the radius of convergence reaches Its greatest possible

value p

Sponsored by the Mathematics Research Center, United States Army,
Madison, Wisconsin under Contract No. k- I 1-022-ORD-2059.
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The investigation of this problem was stimulated by the occurrence

of series such as (1. 1) in the solution of ordinary differential equations

by the method of Frobenius. In the classical equations of hypergeometric

type (Legendre' s and Bessel' s equations, for instance), p = 1 so the

problem is trivial; D'Alembert' s ratio test gives the radius of convergence

unambiguous as I li Ila (r) 1-1 , and the phenomenon of augmented con-

vergence does not occur. But in equations of higher type than hypergeo-

metric (Mathieu' s and Lame' s equations, the spheroidal and ellipsoidal wave

equations, etc.) the recurrence relations always involve at least three

terms, often four or five. Then, the securing of augmented convergence

is equivalent to choosing the parameters in the differential equation so

that a solution may converge in a region containing singularities of the

equation.

Two forms in which the problem commonly arises are

(i) the a i(r) of (1. 2) are all fully determined functions of r, while

the "starting values" u(O), . .. , u(p - 1) are (initially at least) arbitrary;

(ii) the starting values are given in terms of a single value u(0)

by (p - 1) supplementary relations of the form

u(l) = a 1 (O)u(O)

u(2) = a 1 (l)u() + a2 (l)u(O) ,(. 2a

... .. .... 0 ........•ee iee •e

u(p - 1) = atI(p - 2)u(p - 2) + ... + a p_lI( p - 2)u(O)

and the functions a i(r) contain (p - 1) parameters. Each of these special

I
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contain (p - k) parameters and there are (k - 1) relations of the form

(1. 2a), are included in what follows.

Examples of three-term recurrence relations (the case p = 2)

occurred in the latter part of the 19th century. These were treated by

Kelvin and Heine (apparently independently) using a continued-fraction

technique which has been extensively developed by Perron (9, Vol. II § 20)

Meixner and Schifke (7, § 1. 8) Blanch (5), Bouwkamp (6) and others to

the point where it provides a completely satisfactory treatment of the

case p = 2, both from the theoretical and the computational points of view.

The only drawback to the continued-fraction technique is the

apparent impossibility of direct generalization to values of .2 greater than

2. This is hardly surprising, since the essential feature of a continued-

fraction is that the successive convegents have the form A r/B r , where

A and B each satisfy recurrence relations with precisely three terms.
r r

Moreover, a careful study of the technique suggests that the use of

continued fractions provides a convenient formulation of the problem but

little positive help towards a solution, since in order to handle such

fractions one is thrown back ultimately on to a (possibly different)

three-term recurrence relation.

In this paper, therefore, the continued-fraction method has been

abandoned; instead we follow the lead given thirty years ago by

Milne-Thomson (8, 1 5. 3) and by George Birkhoff and his co-workers (1-4),

and use a matrix formulation of the problem. This provides an alternative
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method of treating the three-term recurrence relation and one which

may well, in view of the ease with which modern computers handle

matrix multiplication, prove more suitable for computational purposes.

It also generalizes, very easily and naturally, to the case of recurrence

relations of any finite order.

The problem as a whole has three inter-related aspects:-

(i) determination of the possible radii of convergence Pi of the

series,

(ii) formulation of the conditions to be satisfied in order to secure

augmented convergence (the characteristic equations),

(iii) determination of the associated values of the coefficients u(r).

Sometimes only (i), or (i) and (ii) are required.

In the present paper, we give an outline of the general method in

1 2, then in S 3 re-formulate the problem in matrix notation and obtain

several different forms of the conditions for augmented convergence. We

are then able to justify, in S 4, a working rule by which the possible

radii of convergence may be written down almost immediately. Finally,

in SS 5, 6 the evaluation of the coefficients u(r) is considered, a process

which yieldi further forms of the conditions for augmented convergence.

Besides my obvious indebtedness to the authors cited, my warmest

thanks are also due to Professor Tomlinson Fort for drawing my attention

to the relevance of Birkhoff' s work to the problem.

We shall have occasion to use the following results relating to

difference equations of type (1. 2), due to Birkhoff (2-3), Birkhoff and
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Trjitzinsky (4) and Adams (1). Assume that each coefficient a (r) can

be represented asymptotically, for large r, by a series containing at

most a finite number of positive powers of r , i.e. of the form

00

a i (r) - a E 1 ) r- (1.3)
j=-k

(i)
with real a. . Then for sufficiently large r there exist p linearlyJ

independent solutions of (1. 2) say, w I(r), w2 (r), . .. ,w p(r).

The actual determination of the w i(r) is in the form of series

which are asymptotically valid for large r. In general, each solution

wi(r) is of the form

w i(r) =r 1l1r  tlir  ri Fi() I a

where F i(r) is a series asymptotic in r
f (i) f2(i)

F (r )  I + + + .... (I.4b)

The constants 11, t, 0') flI f2) .... may be found successively by

substitution of the formal series (1. 4) into the equation (1. 2). The

determination of IL is normally simple; it is real, rational and in many

cases is either zero or an integer which may be found by inspection. Then

the possible values of t appear as roots of an algebraic equation of

degree not more than p. When 1L and t have been evaluated, r can

be found with a little more difficulty, and one can then proceed to the

determination of fIt 21 .... ; for discussing the convergence properties
r

of E urx , however, we do not need to know these and indeed it is

often sufficient to have the values of 1L and t.
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This, as has been said, is the solution "in general", and here

"in general" means provided the value of t is not a multiple root of

the equation in which it appears. If this is not the case, however, and

we have an N-fold root, then N solutions are obtained which may take

different forms according to circumstances - indeed, there are so many

possibilities that even a summary would be inordinately long. The case

of double roots should be mentioned, however;if we have a value of

Rl for which a double root t 1 occurs then there are normally two

corresponding solutions of the form

1
1r  r 2 1r 91 l

r t1  exp (* yr ) r [1 + ! + - + .... ] (1.5)

r 2  r

y being a further real constant (1). Even this rule, however, has

exceptions and logarithmic terms may occur (3).
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2. Outline of the method

In order to keep the exposition within reasonable bounds, we shall

make here the simplefying assumption that all the solutions w (r) of

(1. 2) are of the form (1.4) or the form (1.5). As has been mentioned

above, the cases thus excluded are highly exceptional, and it seems that

extension of the method to cover these would not present any intrinsic

difficulty.

The solutions w i(r) can clearly be ordered in such a way that, as

r -oco, we have

Iwl (r) > 1w 2(r) > ..... > 1w p(r)I (2.1)

and in what follows we assume this has been done.

Now the equation (1. 2) is linear and homogeneous, so any solution

u(r) must be expressible as a linear combination of the wi(r), for

sufficiently great r - that is to say, there must be constants a i = 1 to p)

such that

p
u(r) = ; aiwl(r) (2.2)

=1 r

for r sufficiently great; the constants a i will depend on, and be uniquely

determined by, the values taken by the functions aI(r), ... , a (r) and theP

starting-values u(O), ... , u(p-l) .
Suppose, first, that the functions w i (r) are such that w (r) /w (r) - 0

as r - 0o for i < j; brief consideration of the forms (1.4), (1.5) shows

that this will be the case provided we exclude the case , = Rj P
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It I = It I , * tj , that is, we do not have two solutions with the

same value of IL and values of t which differ in amplitude but not in

modulus. Then by writing (2. 2) in the form

p
u(r) = w1 (r)[a, + 2 a w (r)/wl(r)] (2.3)

2

we obtain immediately the result that as r -o o,

u(r),- alwI(r) , (2.4)

provided a # 0, so that the series Eu(r)xr and EwI(r)xr are

equiconvergent. Application of the Cauchy convergence test then shows

at once that the radius of convergence of E u(r)x r is pl' where

P1 = urn lw1(r)l/r ; (2.5)

r - co

from (1.4), (1.5) this clearly has the value 0 if IL, > 0, co if Ol <0

and It 1 - 1 if I1 = 0.

If, however, a1 = 0, then (2. 4) no longer holds; instead of (2.3)

we may write

p
u(r) = w2 (r)[a2 + Z w1 (r)/w(r) ] , (2.6)

3

giving

u(r)- a2 w2 (r) , (2.7)

provided a 2  0 0, so that the radius of convergence of Z u(r)xr becomes

-r 1IW(r)I , i.e. 0 if IL2 > 0, o if iL2 < O, 't21-1 if
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92 = 0. This is certainly not less than pl, and will in fact be greater

than p, if 2 <  1 or g. = 1 and It 2 < ItI I. Similarly, if 1 =a 2  0,

a3 * O, the radius of convergence becomes p3 a lim 1w3 (r) -1 1r.

The effect of this is that the radius of convergence of E u(r)xr

will in general have a certain value; if we can choose the starting-values

u(0), u p_ 1 or parameters in the functions ai(r) or both, in such a way

as to make the constant a 1 vanish, then the radius of convergence may

be increased. If we can also make a2 vanish then the radius of con-

vergence may be increased still further, and so on.

Now consider the case excluded above, namely when two or more

of the w i(r) have the same g and values of t which are equal in

modulus but differ in amplitude. For definiteness, suppose we have

IL = 92 , tI = Te t2 = Teiz , and wi (r) /w2 (r)-*0 for i> 3.

Then as r- oo,

u(r)~r T r ae 1 r + a 2e r ] (2.8)

then somewhat tedious consideration of inequalities show that provided

a I and a 2 are not both zero,

iOlrr 02 r

[aIe r +a 2 e r - 1 , (2.9)

giving

-1/rlimlu(r) -  limr T , (2.10)
r- 00

so that the radius of convergence of Z: u(r)xr is now

P1 E lim r It I  , and this will be the case provided a1 , a2 do notr - o0
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both vanish. If, however, a 1 = a2 = 0, then the radius of convergence

becomes P3 = l ir Iw3 (r) I-1/r.

The same argument is applied without difficulty to similar cases.

If, for instance, we have wi(r)/w 1 (r) -. 0 for i = 2, 3,...,p

wi(r)/w 2 (r)- O for i = 4 ,5,...,p, but p.2 =p. 3  I It 2 I = It 3 I I

t 2 * t 3 then the radius of convergence is pl unless a 1 = O,

if a= 0 and either a or a Oand p4 if a a = =0, etc.p~fa=Ondit 2r*O * 4 3 3
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3. Formal solution of the problem

As remarked above, calculation of the solutions w (r) of (1.2), in
1

full, is a task of prohibitive magnitude, and the technique to be employed

makes use of a device whereby we only need to determine the dominant

parts of the w (r), a comparatively simple matter. We write vi (r) for

the part of wi(r) which is left after omitting the terms which are o(1),

and Yi(r) for the part of v. (r) left after omitting the r term. That

is to say, if w i(r) is given by (1.4) then

v.(r) =r t l r r  , Yi(r) = r tr (3. 1a)

and if w (r) is given by (1. 5),

Rr I L r
v (r) = r t r exp(yr 2 )r* , y(r) r = r exp (yr ) 3. lb)

sothat as r -o

wti(r) - vti(r) yi (r) r 1(3. lc)

The problem becomes amenable to treatment only when we turn

(1.2) into a matrix equation of the first order. We introduce column

vectors U(r), A, and matrices K(r), W(r), V(r), Y(r) as follows:-

U(r) = f u(r + 1), u(r), u(r - l),...,u(r - p + 2) , (3.2)

A = [ai, a 2P a 3,...api (3.3)

a, (r) a 2(r) a 3 (r) ..... p(r)

1 0 0 ..... 0

0 1 0 ..... 0
K(r) 0 0 1 ..... 0 (3.4)

0 0 0 ... 1 0
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(Observe that det K(r) = ()P+lap (r) in (3.4))
pp

wI(r+1) w2 (r+1) ..... wp (r+])

w (r) w2 (r) ..... wp(r)

W(r) = w (r-l) w2 (r-l) ..... Wp(r-l) (3.5)

w (r-p+2) w2 (r-p+2) ..... w p(r-p+2)

V(r), Y(r) being the same in form as W(r) with wi replaced by vl, Y,

respectively.

Now each of the sets of functions wi(r), vi(r), yi(r) are linearly

independent, so that there can be at most a finite number of values of

r for which any of the matrices W(r), V(r) or Y(r) are singular. There

is no real loss of generality if we suppose that W(r), V(r), Y(r) are

all non-singular for all r > p - 1, for otherwise we simply ignore a

finite number of terms at the beginning of the series, convergence not

being affected. Similarly, there is no loss of generality in assuming

that (2.2) holds for all r >p - 1.

This means that not only do we have (as we know already) the

constant vector A such that

U(r) = W(r) A , (3.6)

but also uniquely determined vectors B(r), C(r) given by

U(r) = V(r)B(r) = Y(r)C(r) . (3.7)

Now we have, clearly, as r - oo ,
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W(r) V(r)

so that

B (r) (V [(r)] U(r) = ['1(r)]- W(r)A -- A .(3.8)

Moreover, if we introduce the diagonal matrix D(r) given by

D(r) = ( r 1 ,r 2 , .. r p) 9(3.9)

then from the fact that as r - oo , for fixed k , (r +k) i i we

have immediately

'1(r) D(r)Y(r)

and hence

C0(r) =[Y (r)] U(r) ~D(r)[V(r)] 'U(r),

=D(r)[V(r)] -1W(r) A

D~r) A(3. 11)

Now by mea ns of (3. 2),p (3. 4) we reformulate equation (1. 2) a s

U(r) = K(r)U(r - 1) , (r> p- 1) . (3. 12)

the " starting values" u(O), .. ,u(p-l) constituting the " starting vector"

U(p - 2). Hence we have

U(r + 1) =K(r + I)K(r)U(r - 1)

etc., and if we write, for brevity,

L(n, s) = K(n +s)K(n +s - 1)...K(n + 1) . (s > 1), L(n. 0) = 1 , (3. 13)

we have

U(n +s) =L(p -2,r- p+ 2)U(p -2) (3.15)
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which, by expressing U(r) in terms of the known elements of the

matrices K(r) end the elements of the starting vector U(p - 2), provides

a formal solution of the equation (3. 12). It tells us nothing, however,

r
about the convergence of the corresponding series E u(r)x . So we

introduce the vector B(r) from (3. 7) and have

B(r) = [V(r)]-IL(p - 2,r - p + 2)U(p - 2) , (3. 16)

and (3. 8) then gives

A= lim [V(r)]- L(p- 2,r- p + 2)U(p- 2) . (3.17)
r - oo

th
So the condition a, = 0 is equivalent to the condition that the I element

in [V(r)] 1L(p - 2,r - p + 2)U(p - 2) should tend to zero as r -oc. To

express this in matrix form, let Jn denote a row vector of p elements,
th

in which the n element is unity and the rest all zero, e.g.

Ii = [i, 0,..., 0] J2 = [O,1,0,...,0], etc. (3.18)

then we have

a =J 1 A , (3.19)

so the condition a= 0 is equivalent to

lim Ji[V(r)] 1L(p - 2,r - p + 2)U(p - 2) = 0 (3.20)
r - co

In this formula, it should be noted, we are not using the full solutions

w i(r) but only their dominant terms vi(r) which are easily found.

The radius of convergence of . u(r)xr will thus be p1 in general,
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but will be p2 if the equation

lrm [V(r)] IL(p- 2, r- p+ 2)U(p- 2) = , (3.21a)
r - oO

is satisfied, and p3 if the condition

lrm J2 [V(r)] -IL(p - 2,r - p + 2)U(p - 2) = 0 , (3.21b)
r -woo

is also satisfied, and so on.

The simplest non-trivial example of this is that in which p = 2,

P1 < P2 , and the coefficients a, (r), a (r) contain a single parameter X,

say, the ratio u1/u 0 being given either explicitly or in terms of X.

(This is the situation which arises in the study of Mathieu functions,

spheroidal wave functions, and Lame functions, hitherto studied by the

continued-fraction technique). The problem is then to determine X so

that the radius of convergence may be augmented from p1 to p2 . In

such circumstances (3.21a) provides an equation for calculating the

possible values of X and, in the particular cases mentioned, is

generally known as the characteristic eauation. To keep in line with

this practice, we shall call (3. 20) the t th characteristic eauatto ;

for brevity, denote it by Ei = 0. Then, reverting to general values of 2 ,

suppose there are (p - 1) parameters X ( P ... I X involved

in the problem. The radius of convergence will be p1 in general; in

order that it should be augmented to p2 the one relation E= 0 must

hold among the parameters X i ; if the further relation E = 0 also

holds the radius of convergence is augmented to p3 , etc.; ultimately

the radius of convergence can be increased to pp if p - 1 relations
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hold between the p - 1 parameters.

A further form of the characteristic equations can be obtained, in

which we do not even have to form the matrix V(r) but need only the

still simpler matrix Y(r). By similar reasoning to that which led to

(3. 16) we have

C(r) = [Y(r)] L(p - 2, r - p + 2)U(p - 2) , (3.22)

from which the coefficients c i(r) can be obtained immediately (in

matrix notation, we have ci(r) = JiC(r)). Now we know that as

r-- oo ci(r) - r a i , so the condition ci(r) W 0 does not necessarily

imply a1 = 0. However,

c r ri/r 1/r
{ci(r) } IrNr

- 1 if a 1 0

- 0 if a = 0

so that

{ci(r)}/r .. 0 4= a I =0 , (3.23)

th
and the i characteristic equation can be written

lim {Ji[Y(r)]- L(p - 2,r - p + 2)U(p - 2)) /r = 0 (3.24)
r-oo

Finally, in the specially favourable case when all the p1 are

different, yet another form of the characteristic equation is available.

For in such a case we have, if a I # 0 P
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u(r) a I w (r) = cl(r)yl(r) ; (3. 25)

hence ~ c (r+l) y (r+1)

u (r) c 1 (r) y I (r)

but y1 (r + l)/yl(r) - r r tieI! , so

r -rt  1 - 1 u(r+l) C(r+) __r_( _ +.1_1.(3126-
u t(r) 7- 1 (1 +r (3.26)

air

If, however, a I = 0, a2 # 0, u(r) - c2 (r)Y2 (r) and we find by similar

working that

-R1r  - -1 url-( -2 ) r  F -
r- t 1 r-L u(r) -rlR (tZ/tl~

and the right hand side of this approaches the limit 0 if R I> '2

(t 2 /t 1) if R1 = 2 . Hence the condition a1 = 0, a2 0 :

-rn r 1r -1 e u(r+l) 0 f
r e u(r) =  1 f2 '

= (tz/t1 ) if ILI = . (3.27)

Since u(r + 1) = JlU(r), u(r) = J2 U(r), and U(r) is given by (3.15), this

provides an alternative form of the first characteristic equation.
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4. Direct determination of the possible radii of convergence

From the results in § 3 we obtain easily the following working rule

for determining the possible radii of convergence.

In the relation (1.2), divide by the highest power of r occurring,

then let r - oo, and let the limiting form of (1.2) be

wu(r + 1) = a1 u(r) + a2 u(r- I) +... + ap u(r- p+ 1) , (4.1)

W) at, a2 p...,a being constants, not all zero.

Then the possible radii of convergence, p, are the roots of the

equation

1 2 p -iS+ + ... +p =0 ; (4.2z)

this equation is to be regarded as essentially of degree (p - 1), so that

infinite roots (if they occur) must be counted.

The justification of this rule depends on the fact that the existence

of a solution of (1. 2) of the form (1.4) or (0. 5) with I% > 0 implies the

existence of a zero root of (4. 2), the existence of a solution with R < 0

implies an infinite root of (4. 2), while for solutions with R. = 0 the

possible values of t are given by the reciprocals of the finite non-zero

roots of (4. 2), as one easily sees by actual substitution of the trial

solutions (1.4) or (1. 5).

Hence the possible radii of convergence of the series E u(r)xr

can be written down at once from the recurrence relation (1. 2); this

generalizes the rule given by Perron in (9) Vol. II,§ 46.
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5. Determination of the coefficients

One might think that when the starting-values or the parameters

have been determined in such a way as to secure the desired radius of

convergence, the problem would be solved in the sense that the

coefficients u(r) can be found successively by use of (1.2). However,

in the simplest non-trivial case, namely p = 2, it has long been known

that this is not so (10). Unless we achieve the impossible by determining

the exact values of any parameters involved, and making no approxi-

mations whatever at any stage, the small errors involved will inevitably

build up, re-introducing undesired functions wl (r), W 2 (r), etc. into

u(r), and so destroying the augmented convergence.

To avoid this, we need to have expressions which give the U(r)

(and hence the u(r)) directly. The process of obtaining these leads

to yet another form for the characteristic equations.

For simplicity, suppose first that a (r) * 0 for all _r, so thatP

the matrix K(r) is non-singular for all r ; the exceptional case will

be dealt with in the next section.

Suppose we wish our u(r) to be a predetermined combination of the

wi(r) - that is to say, the ai are to have pre-assigned values. (For

instance, we may wish to have aI =0 for i = 1,2,...,p- I in order to

r
secure maximal convergence for Z u(r)xr . ) Now we have, from (3. 7),

(3. 14)

L(n, s)U(n) = V(n + s)B(n + s) , (5. 1)
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hence

B(n + s) = [V(n + s)]- L(n, s)U(n) . (5.2)

Now let s - oo; then by (3.8) the left hand side tends to the definite

limit A, so that the limit of the right-hand side certainly exists. At

present we are excluding the case a (r) = 0, so all the K(r) are

non-singular, L(n, s) is also non-singular and hence

lir [L(n, s)]l V(n + s)
S -- 00

exists. But from (3.4) we have

U(n) = [L(n, s)]- V(n + s)B(n + s) (5.3)

so that on letting s - o we have (since B(n + s) - A),

U(n) = lim [L(n, s)]I V(n + s)A . (5.4)
S-000

In passing, it may be noted that we can easily verify directly the

fact that U(n), as given by (5. 4), does satisfy the difference equation

in its vector form (3. 12). Observing that

L(n, s) = L(n + 1, s - l)K(n + 1)

which is an immediate consequence of the definition of L(n, s) in (3. 13),

we obtain

U(n) =[K(n + I)] "I lim [L(n + I, s - I)]- Iv(n + s)A

-O

=[K(n + 1)]I U(n + 1)

so that K(n + l)U(n) = U(n + 1); which is the same as (3. 12).
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Going back to relation (5. 4), we bring in another expression for

U(n), namely that obtained in (3. 15), and combining the two we have

L(p- 2, n-p+2)U(p- 2) =lim [L(n,s)] V(n+s)A . (5.5)
S- 00

In this, n may be any integer >p-1 ; for n =p- 1 we havea simpler

form

U(p- 2) = lim [L(p - 2, s)]-fV(p- 2 + s)A . (5.6)
S- 00

Let us consider the significance of this equation. Each side is

a p - element column vector, so that (5. 5) or (5. 6) contains effectively

p linear equations. It provides the necessary conditions which must

be satisfied in order that the elements a i of the vector A shall have

pre-determined values, these conditions involving the p elements of

the starting vector U(p - 2) and the elemencs of the matrices K(r) which,

as remarked already, may contain parameters. If we wish convergence

to be augmented from p1 to P2 then we must have a I = 0, but the

remaining a i are arbitrary, so that (5. 5) will provide precisely one

condition to be satisfied, which is thus equivalent to the first character-

istic equation (3. 21a). If we wish convergence to be augmented to Py

we must have a 1 = a2 = 0, so that (5.5) then has in it two conditions,

equivalent to the first and second characteristic equations and so on.

For maximal convergence, we must have ai = 0 for i < p, so that

(5. 5) provides (p - 1) conditions.
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6. Case of a singular K(r)

We have now to show how the analysis of § 5 is affected when

a p(r) vanishes for some r, causing the corresponding matrix K(r)

to become singular. For simplicity, we shall deal only with the case

when there is a single value of r, say r = N, for which p(r) = 0.

It is still possible, then, to construct a solution having prescribed

values of the a,, by using (5. 4) with n > N. For n < N we must use

the equivalent of (3. 15), namely

U(n) = L(p - 2, n - p + 2)U(p - 2) (6.1)

Since this is used only for the calculation of a finite number of U(n),

the small errors inevitably introduced will not build up to destroy

augmented convergence. The equation (5. 5) still holds good provided

we have n > N, and can be used in the same way to obtain the various

characteristic equations.

One other possibility, of considerable interest, arises in this case

but not in that of § 5. We have, for the column vector U( N - 1)

U(N- l){u(N), u(N- 1), .... ,u(N- p +)

with

U(N- 1) = L(p - ,N - p+ I)U(p- 2) (6.2)

Suppose we choose the (p - 1) parameters in the problem so as to make

u(N) =u(N- 1) = .... =u(N- p+ 2) = 0; then since ap(N) = 0 we

have u(N + 1) = 0 also, and hence U(N) = 0. But we have
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U(N + 1) = K(N + I)U(N), etc., and consequently U(n) = 0 for all

n > N. The series (1. 1) then reduces to a polynomial of degree (N - p + 1)

in x. Since a polynomial is, of course, convergent everywhere this may,

in certain circumstances, provide a means of augmenting the convergence

from pp (if this is finite) to infinity.

As an illustration of this, consider the spheroidal wave equation

2
(1 -x 2)-d- 2x Aw+ {X -gi. (l-_x2)- + y(l-_x2)}w =0 (6.3)

dx 2  dx

regarding y as fixed and X, I as disposable parameters. Assuming

a solution of the form

Z u(r)xr  (6.4)
0

the general recurrence relation is found to contain four terms (i. e. p = 3)

and to be

(2r+ l)(2r+ 2)u(r+ 1) = (8r + 2 - Y 2 )u(r) + (6.5)

+ {X + 2 ,y - (Zr - l)(Zr - Z)) u(r - 1) + y2u(r-2) .

Dividing through by 4r2 and letting r - o we obtain, in the notation of

1 4,

W= 1I a I = 2P a 2 =-1, a 3 = 0 P (6.6)

giving p1 = P2  1, P3 
= oo. Hence by suitable choice of X and IL we

can obtain an infinite series solution which is an integral function of x.

Here a p(r) = y 2 0 so the general method of 1 5 applies.

Now, however, consider the degenerate case where y = 0 (i. e. the
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Associated Legendre equation). The situation is now different, since

we have p = 2, and the possible radii of convergence are 1, 1 so that

a solution which is an infinite series of the form (6.4) cannot possibly

converge outside Ixi = 1. The only way to obtain a solution with

better convergence properties is to make use of the fact that now,

since p = 2, we have p(r) = x - (2r - 1)(?r - 2), so that if we choose

X as (2N - 1)(ZN - 2), p(N) = 0 and we have the situation of this

paragraph. By suitable choice of we can make u(N) vanish, and

the solution then becomes a polynomial of degree (N - 1) in x 2
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